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CHRISTINE C. PELLETIER, JAMES L. LAMBERT,* and MARK BORCHERT
Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, California 91109 (C.C.P., J.L.L.);
and Division of Ophthalmology, Childrens Hospital Los Angeles and Department of Ophthalmology, Keck School of Medicine,
University of Southern California, Los Angeles, California 90027 (M.B.)

Glucose concentrations of in vitro human aqueous humor (HAH)
samples from cataract patients were determined using 785 nm Ra-
man spectra and partial least squares (PLS) calibration. PLS mod-
els were created from spectra of prepared calibration solutions
rather than aqueous humor samples. Spectra were obtained with
an excitation energy (100 mW for 150 s), which was higher than
can be applied in vivo, to decrease the models’ contribution to pre-
diction uncertainty. The solutions contained experimentally de-
signed levels of glucose, bicarbonate, lactate, urea, and ascorbate.
Multiplicative signal correction of spectra helped compensate for
the 620% drift in laser power observed at the sample over six
noncontiguous days of data collection. Seventeen HAH samples con-
taining 38–775 mg/dL of glucose exhibited a root-mean-square er-
ror (RMSEP) of 22 mg/dL, coefficient of determination (r2) of 0.989,
and bias of 6 mg/dL when predicted from lower energy (30 s) spec-
tra collected contemporaneously with fifty calibration spectra. Sim-
ilar results were obtained even when spectral data were gathered
separately for human aqueous humor samples and calibration sam-
ples: 10 HAH samples, calibrated on 25 solutions measured 3.6
weeks earlier, exhibited an RMSEP of 23 mg/dL, r2 of 0.992, and
bias of 9 mg/dL. The results demonstrate progress toward the de-
termination of glucose levels in patient-derived aqueous humor us-
ing laboratory-derived ‘‘artificial aqueous humor’’ calibration so-
lutions.

Index Headings: Raman; Partial least squares; PLS; Multivariate;
Calibration; Multiplicative signal correction; MSC; Quantitative;
Glucose; Aqueous humor.

INTRODUCTION

The aqueous humor in the anterior chamber of the eye
is an attractive target for noninvasive spectroscopic glu-
cose monitoring. Glucose monitoring is important for the
management of diabetes mellitus1 and may provide a par-
adigm for broader multiple-metabolite monitoring. Aque-
ous humor in the eye is optically more accessible than
blood in tissues, since the anterior chamber is close to
the exterior of the body and bounded by the transparent
cornea. Glucose levels in aqueous humor appear to cor-
relate with blood glucose levels,2–5 and the time lag for
reflecting a change in blood glucose is probably short.†

In addition, aqueous humor is a less complex fluid than
is blood, since the blood–aqueous barrier filters out most
large molecules.

Infrared absorption spectroscopy has received the most
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† Aqueous humor glucose response to a change in blood glucose has

been reported as being almost immediate above 200 mg/dL blood
glucose based on nine rabbits,4 nearly instantaneous in one human,6

22.2 to 11.2 min (average ,5 min) in five rabbits,7 an immediate
change in three rabbits,8 and on the order of 30 min in one rabbit.9

attention for noninvasive glucose determination in blood.
However, polarimetry, stimulated Raman spectroscopy,
and normal Raman spectroscopy are the techniques that
have been primarily investigated for glucose determina-
tion in aqueous humor.10,11 We, among others, have cho-
sen Raman spectroscopy with multivariate analysis—
here, partial least squares (PLS)12—for determining glu-
cose in aqueous humor because this combination can
quantitatively extract the signal due to relatively low lev-
els of glucose despite the presence of interfering com-
ponents.4,13–16

Ideally, a multivariate calibration model is created
from a set of spectra (or other data) that contain all of
the variation that will be encountered in future spectra.
The future variation includes changes in instrumental and
environmental parameters as well as the range of each
chemical component’s concentration. To deal with the po-
tential overload of variables to consider, several ap-
proaches are often used together. Some potential variables
are at least approximately controlled, such as the use of
a buffer to maintain a constant pH. Some variables are
corrected for, as in the calibration of an instrument before
using it or the preprocessing of spectra to correct for a
(known) non-constant detector response. Some variables,
such as instrument-specific characteristics, are dealt with
using model transfer techniques after development of the
multivariate model. The remaining variables are hope-
fully represented in the multivariate calibration model it-
self. For example, a calibration model for determining
glucose in the aqueous humor of patients could conceiv-
ably be built on spectra from a very large number of
volunteers, with the expectation that the spectra so ob-
tained would represent the spectra of future patients’
aqueous humor.

Providing a calibration set based directly on in vivo
human aqueous humor has at least two disadvantages.
The first includes the expense, difficulty, and potential
hazards of obtaining spectra from a large number of vol-
unteers, especially while the technique is still being de-
veloped, and the problems associated with repeating the
procedure at a later time if recalibration were necessary.
The second is that the variation in glucose level would
not necessarily be independent from the variation in the
levels of other spectrally active components in the aque-
ous humor. For example, the model’s prediction of glu-
cose concentration could actually be based on bicarbon-
ate and/or lactate Raman peaks. This collinear-variation
problem can lead to an initial model that appears to per-
form well, but which does not maintain its performance
later when the collinearity fails to hold.
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Since the number and molecular size of the major com-
ponents of human aqueous humor are relatively small,
PLS calibration for in vivo glucose might be possible
based on the spectra of laboratory-derived solutions rath-
er than patient-derived spectra. Such a calibration could
be repeated as needed to reflect changes in the instrument
or procedure and is much more accessible during the de-
velopment stage. Potentially, higher quality spectra for
constructing the PLS model can be obtained when labo-
ratory samples are used, since they can be probed with a
much higher laser power than is safe in an eye.17,18 In
addition, component concentrations in laboratory samples
can be experimentally designed to avoid the problem of
concentration collinearity.

Since we did not yet have access to in vivo human
aqueous humor for this study, we examine here in vitro
human aqueous humor glucose determination. Although
Raman spectra of human and rabbit aqueous humor have
previously been examined qualitatively,19 and rabbit
aqueous humor glucose has been quantified with a Ra-
man-PLS method using the same samples for calibration
and prediction,4 we report the first (to our knowledge)
successful quantitative determination of glucose from Ra-
man spectra of natural (in vitro) aqueous humor samples
calibrated with laboratory-derived ‘‘artificial aqueous hu-
mor’’ (AAH) solutions. The results not only show that
aqueous humor glucose concentration can be accurately
predicted in samples that are completely separate from
the PLS calibration solutions, but that a predictive PLS
model can be stable over a time period of several weeks.

Future extension of this approach to the measurement
of in vivo aqueous humor may require several additional
steps. Spectral interference may be amenable to correc-
tion by augmenting the PLS model with appropriate spec-
tra (e.g., ascorbate, cornea, lens spectra). In vivo pH and
temperature differences relative to in vitro may be com-
pensated by adjusting the conditions under which cali-
bration samples are measured. Instrument design will
have to consider eye-movement issues. A review of ob-
stacles related to clinical implementation is included else-
where.18 Nevertheless, the results reported here indicate
that overcoming the hurdles of accessible model recali-
bration, PLS model stability, and eye-compatible laser
energy requirements is probably possible.

Multivariate calibration allows information from the
entire Raman spectrum to contribute to the determination
of an analyte. The net result of PLS calibration can be
expressed as a calibration vector, b (also called a regres-
sion vector or calibration ‘‘spectrum’’). The dot product
of a sample spectrum x with b predicts the glucose con-
centration, c, of that sample:

x·b 5 c (1)

In practice, the spectrum is mean-centered before apply-
ing Eq. 1 by subtracting the average of the spectra used
in the calibration. The average glucose concentration of
the calibration samples is then added to the value of c
found in Eq. 1 to obtain the final concentration of the
sample.

Preprocessing the spectra before mean-centering with
multiplicative signal correction (MSC),12 as suggested by
Goetz et al.,16 can correct for multiplicative interference
and/or different spectral offsets. MSC linearly rescales

each spectrum to make the corrected spectrum similar to
a reference spectrum (e.g., the average of the spectra used
in the calibration). Additive and multiplicative scaling
factors for each measured spectrum are obtained by re-
gressing the spectrum’s intensities on the reference spec-
trum’s intensities. The dominance of Raman scattering of
water in the spectra of the low-concentration aqueous so-
lutions considered here justifies this approach, since cor-
rections based on the whole spectrum are unlikely to be
distorted by large peaks in some of the individual spectra.

EXPERIMENTAL

Raman Instrument. A titanium:sapphire laser,
pumped by an argon-ion laser, produced ;400 mW of
785 nm excitation, which was coupled via a single-mode
optical fiber to a Kaiser Optical Systems (KOSI) confocal
Raman microscope.18 A 203 objective, producing a depth
of field of 130 mm full width at half-maximum (FWHM)
and a beam waist radius of 5 mm in air, focused ;100
mW (620% due to drift) of laser power into a sample.
The same objective collected the Raman-scattered pho-
tons (1808 geometry), which were transferred through an
optical fiber to the f /1.8 KOSI HoloSpec spectrograph
and imaged onto a liquid-nitrogen-cooled charge-coupled
device (CCD) camera (Princeton Instruments). The cam-
era electronics were interfaced to a shutter, which blocked
the laser beam except during spectral data collection, as
well as to a computer. The microscope interface included
a video camera for viewing a real-time image of the laser
impinging on the sample.

An in-house Matlab (MathWorks, Inc.) computer pro-
gram coordinated laser-power monitoring with collection
of spectral data, which were processed and stored using
HoloGRAMS 4.0 (KOSI) software. Fifty spectra having
an acquisition time of 3 s (;300 mJ) per spectrum were
collected in series for each sample. These could be added
together later to create equivalent exposure times of 3–
150 s (0.3–15 J). Laser power was continually monitored
with a power meter having a detector head mounted on
top of the microscope to receive a fraction of the laser
light, which was picked off by a custom-installed quartz
beam-splitter. Periodic laser power measurements at the
sample position were used to calibrate the picked-off
fraction, indicating that the laser power impinging on
samples varied between 79 and 124 mW (;100 mW 6
20%) over the course of data gathering.

Spectra of neon emission and white light, provided by
a HoloLab (KOSI) calibration accessory, were employed
to calibrate spectral wavelength and intensity axes. The
measured laser wavelength for converting wavelengths to
wavenumbers was determined from the cyclohexane peak
at 801.8 cm21. Spectral calibrations were refreshed at the
beginning of each day of experimentation, and whenever
the instrument alignment had been disturbed, by collect-
ing new white-light and neon spectra. The HoloGRAMS
software automatically dark-count subtracted and spec-
trally calibrated the sample spectra as they were collect-
ed. Intensity calibration (flat-fielding) was carried out by
dividing the raw sample spectrum by the white-light
spectrum corrected to the black-body response, thus re-
ducing fixed pattern noise and yielding spectra that were
more instrument independent.
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Partial Least Squares Model Calibration Samples.
Two sets of 25 artificial aqueous humor (AAH) samples,
Set I and Set II, were planned using a 25-sample, 5-level
partial factorial experimental design20 to have indepen-
dently varying concentrations of five components. Four
of the components had the same nominal concentrations
in corresponding samples of the two sets. The glucose
concentration levels were different in the two sets, but
the mean of the glucose levels in each set was kept the
same, at 400 mg/dL. This arrangement made the two sets
combinable into a single set of 50 samples, theoretically
having zero covariance between the components. The two
sets of AAH samples were prepared independently, from
separate stock solutions, on separate days, 3.6 weeks
apart.

As prepared, glucose, bicarbonate, lactate, urea, and
ascorbate concentration levels spanned the ranges from
zero to 770, 250, 200, 180, and 90 mg/dL, respectively
(;133, 23, 53, 73, and 53 relative to concentrations
in normal human aqueous humor3,19,21). The high ends of
these ranges were chosen to include extreme concentra-
tions that might be encountered in aqueous humor based
on the concentrations found in blood in various disease
states.22 Samples were prepared by diluting volumes of
stock solutions of the components with calculated vol-
umes of saline solution (aqueous sodium chloride, 0.77
mg/dL21). Stock solutions were made by dissolving
known masses of powdered reagents in saline solution,
adjusting the pH of the solutions to approximate in vitro
human aqueous humor pH, and diluting to volume in
volumetric flasks. To get an idea of what the in vitro
HAH pH would be, the pH of five human aqueous humor
samples was measured, yielding 8.8 6 0.3, consistent
with a previous report.23 The post-dilution pH values for
the AAH samples were, for Set I, 8.2 6 1.4, and for a
10-sample subset of Set II, 7.9 6 1.3.

Human Aqueous Humor Samples. Specimens of hu-
man aqueous humor (HAH) were collected from patients
undergoing cataract surgery at Los Angeles County/Uni-
versity of Southern California Medical Center, with In-
stitutional Review Board (IRB) approval. The specimens
were stored at 230 8C until the day of analysis, when
they were thawed and vortexed. Samples were kept on
ice until an hour before measurement, when they were
allowed to come to room temperature.

Set A contained seven natural, in vitro HAH samples
that were interspersed with Set I AAH samples for spec-
tral and reference-concentration measurement. Set B con-
tained ten in vitro HAH samples, six of which were aug-
mented with glucose to represent the hyperphysiological
concentrations that may be encountered in uncontrolled
diabetes. Glucose augmentation was carried out by (1)
evaporating 10–70 mL of an 800 mg/dL aqueous glucose
solution in micro-centrifuge tubes, (2) adding about 90
mL of HAH, and (3) vortexing to redissolve the glucose.
Set B samples were interspersed with Set II AAH sam-
ples for measurement.

The reference concentrations of D-glucose in the HAH
samples were measured using a 2700 Select Biochemistry
Analyzer (YSI Life Sciences). Internal recalibration of
the instrument was completed before every sample mea-
surement to avoid correlated errors. Periodically, the YSI-
supplied calibration solution used for internal recalibra-

tion was measured as if it were a sample, and all AAH
samples were measured with the Analyzer as well. Ref-
erence concentrations for the 17 HAH samples spanned
the range from 38 to 775 mg/dL of glucose.

Sample Handling. Spectra were obtained from an al-
iquot of a sample while it was contained in a physical
model of the anterior chamber of the eye.14 The physical
model consisted of a poly(methyl methacrylate) contact
lens overturned on a quartz microscope slide. The slide
was affixed to a 9-mm-thick metal base so that the as-
sembly (‘‘sample carrier’’) could be interchanged with
the 1-cm cuvette of cyclohexane used as a spectroscopic
reference without disturbing the microscope stage height.
Before each sample measurement, the sample carrier was
aligned to the laser beam by translating the microscope
stage in the horizontal plane. The height of the stage was
carefully set at the beginning of each day of gathering
sample spectra and whenever the stage had been moved
vertically, which rarely occurred. First the height was
found where the laser reflection off the top surface of the
contact lens was in focus in the video image. Then the
stage was raised 1100 mm so that the focus of the laser
beam was within the sample.

Small air bubbles were observed to collect on the inner
surface of the contact lens over time after receiving the
sample, whether or not it was exposed to the laser beam.
To reduce the number and size of these bubbles, sample
solutions were brought to ambient room temperature and
centrifuged 5 min before being loaded into the contact
lens. Reference glucose concentration values were deter-
mined with the Biochemistry Analyzer using a 10 mL
aliquot from the micro-centrifuge tube originally holding
the sample as well as directly from the contact lens im-
mediately after spectral data collection. The average of
the two Analyzer results was used as the glucose refer-
ence concentration.

Data Processing. Individual 3-s spectra (50 per sam-
ple) were imported into Matlab for cosmic-ray correction
and summation to an equivalent exposure time, t. In gen-
eral, the first t/3 spectra for each sample were summed,
while the remainder of the fifty 3-s spectra was ignored
(e.g., for a 12-s equivalent exposure time, the first four
3-s spectra were added together). Resulting spectra were
preprocessed and then multiplied according to Eq. 1 to
yield concentrations. Statistics to assess performance,
such as the root-mean-square error of prediction
(RMSEP), coefficient of determination (r 2), and bias
(mean difference between predicted and reference con-
centrations), were generally calculated from a set of con-
centration predictions containing one prediction per sam-
ple.

The 17-HAH concentration standard deviations in Fig.
6 below (denoted by l) and the statistics describing glu-
cose predictions from 30-s and 12-s spectra in Table II,
however, were calculated from a larger number of pre-
dictions, N, than the number of samples in a set. This
was done to reduce the uncertainty inherent in statistics
calculated from sets containing small numbers of results.
The extra predictions came from sample spectra of equiv-
alent exposure time t, which were obtained by summing
separate, previously ignored 3-s spectra. For example, fif-
ty 3-s spectra were collected for each of the 17 HAH
samples. The sum of the first ten 3-s spectra for each
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Fig. 1. Spectra of the 50 designed-solution (AAH) samples in Sets I
and II. Each spectrum is the result of summing (after correction for
cosmic rays) fifty 3-s spectra that had been collected in series, yielding
an equivalent exposure time of 150 s. The 300–1500 cm21 region was
selected before calculating the 50-AAH PLS model.

Fig. 2. The spectra of Fig. 1 after subtraction of a smooth background.
Peaks are marked to identify the major contributor(s): (G) glucose, (Q)
quartz, (C) contact lens, (L) lactate, (U) urea, (B) bicarbonate, and (?)
unidentified contributor. See Fig. 4 for glucose peak locations.

sample yielded 30-s spectra from which 17 concentra-
tions were predicted with the 50-AAH model. This pro-
cess was then repeated using the second through fifth sets
of ten spectra for each sample to obtain a total of N 5 5
3 17 5 85 predictions. The root-mean-square error of
prediction calculated from the 85 predictions yielded 22.0
mg/dL for the 30-s RMSEP, as recorded in the fourth row
of Table II. The 17-HAH standard deviations in Fig. 6
were similarly calculated, setting n 5 N in Eq. 2.

PLSpToolbox 3.0 (Eigenvector Research, Inc.) routines
were employed for preprocessing the spectra (i.e., selec-
tion of the 300 to 1500 cm21 region and multiplicative
signal correction (MSC), followed by mean-centering)
and for constructing partial least squares (PLS) models.
For display purposes only, a smooth background was
subtracted from the spectra with the Pearson’s algorithm
in KOSI’s HoloReact program.

RESULTS AND DISCUSSION

Artificial Aqueous Humor Spectra. Spectra of the 50
experimentally designed ‘‘artificial aqueous humor’’
(AAH) samples of Sets I and II (150-s equivalent expo-
sure time) are displayed in Fig. 1. Their background-sub-
tracted counterparts are shown in Fig. 2. While the latter
look better, models and predictions calculated from spec-
tra with background subtraction generally performed no
better than those calculated from spectra without subtrac-
tion.

A slight over-correction at higher wavenumbers during
intensity calibration may explain the increasing baselines
of the spectra of Fig. 1. An uncalibrated white-light spec-
trum is roughly a parabola over the 300–1500 cm21 re-
gion, with a maximum near 825 cm21. Detector (CCD)
sensitivity is lower at wavenumbers farther from the max-
imum. Since the intensity calibration essentially magni-
fies spectral intensities at the ends of spectra to have
equal weight with those in the middle, intensity accuracy
and precision degrade toward wavenumber extremes. To

see if the intensity correction was adversely affecting glu-
cose predictions, a number of PLS models were con-
structed using spectra that were not intensity calibrated.
For the models tested, using spectra without intensity cal-
ibration did not improve glucose prediction. Therefore,
only intensity-calibrated spectra were used to obtain the
results in this report.

Spectral Normalization. Raman spectral intensity is
proportional to laser power, and PLS model predictions
of glucose concentration depend on spectral intensities,
so laser power variation can result in prediction uncer-
tainty if not compensated. Attempts were made, using
several normalization methods, to correct the Raman
spectra for the rather large laser power variations (620%)
that occurred during data collection. The area of the base-
line-subtracted 1640 cm21 water band and the continu-
ously monitored laser power picked off by the custom-
installed beam-splitter were each tried as normalization
factors. However, preprocessing the spectra using MSC
resulted in smaller prediction errors than employing ei-
ther of these normalizations. The success of MSC may
be related to its accommodation of spectral offsets as well
as multiplicative effects such as laser power drift. The
correction by MSC of some other error source, such as
subtle fluorescence or the possibly varying elastic scat-
tering that might occur in aqueous humor samples, may
also have contributed to its success.

Designed-Solution (AAH) Components. Since glu-
cose determination was the main objective during exper-
imentation, extra care was taken to record the gravimetric
concentration of glucose in the AAH samples. The con-
centrations of all components (including glucose) of the
designed solutions were, however, the result of volumet-
ric transfers of stocks solutions. Gravimetric glucose con-
centrations in AAH samples were calculated from the
mass of the glucose stock solution added, the mass of the
final sample solution, and tabulated 25 densities.

The YSI Analyzer glucose values averaged 97.7% of
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TABLE I. AAH component prediction statistics using PLS modelsa based on 150-s, non-contemporaneous spectra of 25 AAH samples and
volumetric reference concentrations.

Calibration set,
prediction set Statisticb

Components

Urea Lactate Ascorbate Bicarbonate Glucose

Set I, Set II
Set I, Set II
Set I, Set II
Set II, Set I
Set II, Set I
Set II, Set I

RMSEPc

r2

biasc

RMSEPc

r2

biasc

7
0.990

22.4
10

0.977
6

17
0.956
2.1

16
0.938
4

41
0.007

29.9
30

0.168
10

21
0.962

212.1
14

0.972
6

18
0.996
2.1

28
0.990

26

a All models employ five factors (‘‘latent variables’’) each.
b Statistics were calculated from 25 predictions in every case.
c Components’ RMSEP and bias are in mg/dL.

Fig. 3. Determination of glucose concentrations from Raman spectra.
(a) The line fit to the leave-one-out cross-validation results for the 50-
AAH PLS model (5 factors) based on the spectra of Fig. 1 has a slope
of 0.986 and intercept of 5.8 mg/dL. The r 2 is 0.992; RMSECV is 24
mg/dL; bias is zero. (b) Glucose concentrations of 17 in vitro HAH
samples (Sets A and B) predicted from their 150-s spectra using the
50-AAH PLS model are plotted versus reference concentration. The
slope is 0.972; intercept is 11 mg/dL; r 2 is 0.991; RMSEP is 20.4 mg/
dL; bias is 5.9 mg/dL.

the gravimetric AAH concentrations and of the YSI cal-
ibration solution concentration (manufacturer’s specifi-
cation 5 250 mg/dL). Consequently, final YSI Analyzer
reference glucose concentrations in this paper are the raw
Analyzer glucose determinations divided by 0.977. Omit-
ting this correction would not have changed the values
of statistics (RMSEP, bias, r 2) reported in this paper, how-
ever, because the same reference scale was used during
model calibration and for calculating prediction errors.

Reference glucose concentration uncertainty is likely
to be consistent with YSI’s Analyzer linearity specifica-

tion of 65%. Out of 155 Analyzer glucose determina-
tions, 94% of the raw glucose values lay within this range
(97% of the values after division by 0.977). The 155
determinations included non-blank measurements of
AAH, which were compared to gravimetric concentra-
tions, and measurements of the YSI-supplied calibration
solution, which were compared to the specified concen-
tration (250 mg/dL).

A comparison of the predictive ability of non-contem-
poraneous PLS models for AAH components is shown
in Table I. Models are based on 150-s spectra, use five
factors each, and were calculated one component at a
time (PLS-1). All reference concentrations used in gen-
erating Table I are the volumetric concentrations, since
YSI and gravimetric measurements were not available for
most of the analytes. The component prediction results
in Table I are generally similar to the glucose results
based on Analyzer reference concentrations in Table II,
except for ascorbate. There was almost no correlation be-
tween predicted ascorbate and prepared ascorbate con-
centrations. This is probably due to a combination of the
following observations: (1) the strongest (dominant) Ra-
man peak in aqueous ascorbate is at 1650 cm21,26 which
is outside of the spectral region selected for optimal glu-
cose prediction, (2) the prediction vectors from Sets I and
II had a couple of peaks in common, but were very noisy,
indicating calibration on extraneous spectral information,
and (3) ascorbate is unstable in solution at neutral pH.27

Example Aqueous Humor Glucose Predictions. A
representative glucose calibration is shown in Fig. 3a.
The 50-AAH PLS model (using five factors) was calcu-
lated from the spectra in Fig. 1 after selection of the 300–
1500 wavenumber region, MSC, and mean-centering.
Leave-one-out cross-validation resulted in a coefficient of
determination (r 2) of 0.992, a root-mean-square error of
cross-validation (RMSECV) of 24.0 mg/dL, and bias of
zero. The weight vector of the PLS factor accounting for
the largest amount of concentration variance is compared
to an authentic glucose spectrum in Fig. 4. Reassurance
that the PLS model is responding to glucose, rather than
to some other serendipitous correlation, is provided by
their similarity.24 Glucose self-prediction errors (concen-
tration residuals) of the AAH samples making up the 50-
AAH model do not seem to have a noticeable trend with
concentration, as illustrated in Fig. 5. Constant error var-
iance relative to concentration, as appears to be the case
here, validates the use of PLS.12

The glucose concentrations of the 17 Set A and Set B
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Fig. 4. Comparison of glucose spectrum with PLS-model second
weight vector. Top trace is a measured glucose spectrum (772 mg/dL,
150-s equivalent exposure, offset after subtraction of a saline solution
‘‘blank’’ spectrum); bottom trace is the weight vector (scaled) associated
with the second PLS factor in the 50-AAH model. The second factor
accounted for 19% of the X (spectral) variance and 67% of the Y (con-
centration) variance in this model.

Fig. 5. Circles represent errors of predicting the samples in the 50-
AAH model (concentration residuals from self-prediction, not cross-
validation). Squares represent errors (predicted glucose minus reference
glucose) for the 17 HAH samples found using 150-s spectra.

TABLE II. Statistics of glucose predictions of in vitro human aqueous humor samples and, for comparison, of 25 AAH samples that were
not used to create the 25-AAH PLS model.

Samples Exposure timea (s) Model RMSEP (mg/dL) r2 Bias (mg/dL) N for statisticsc

17 HAH
25 Set II AAH
10 Set B HAH
17 HAH
25 Set II AAH

150
150
150

30
30

50-AAH
25 Set I AAHb

25 Set I AAHb

50-AAH
25 Set I AAHb

20.4
23.0
21.6
22.0
25.2

0.991
0.995
0.994
0.989
0.995

5.9
6.3
9.4
5.9
6.3

17
25
10
85

125
10 Set B HAH
17 HAH
25 Set II AAH
10 Set B HAH

30
12
12
12

25 Set I AAHb

50-AAH
25 Set I AAHb

25 Set I AAHb

22.9
26.0
28.5
26.4

0.992
0.984
0.994
0.988

9.4
6.0
6.7
9.6

50
204
300
120

a Equivalent exposure time of the predicted spectra. Both models were created from 150-s calibration spectra.
b This model was calculated from the 25 designed-solution (AAH) samples of Set I, the spectra of which were collected 3.6 weeks earlier than the

spectra of the 25 Set II AAH and the 10 Set B HAH samples.
c N is the number of predictions used to calculate RMSEP, r2, and bias, as described in the Data Processing subsection.

HAH samples, as predicted from 150-s spectra by the 50-
AAH PLS model represented in Fig. 3a, are plotted in
Fig. 3b and summarized in the first row of Table II. Six
glucose-augmented and 11 natural in vitro human aque-
ous humor samples are represented in the total of 17 sam-
ples. The r 2 of 0.991, RMSEP of 20.4 mg/dL, and bias
of 5.9 mg/dL are similar to model values. HAH concen-
tration errors appear consistent with AAH errors, as
shown in Fig. 5. These results indicate that the compo-
nents of in vitro HAH that are not represented in the
calibration solutions are interfering very little with glu-
cose determination. The idea that glucose in human aque-
ous humor can be determined from Raman spectra using
a relatively straightforward PLS model created from lab-
oratory-derived artificial aqueous humor samples is there-
fore supported.

Model Stability Over Time. Practical use of a PLS
model for aqueous humor glucose determination will re-
quire that spectra of samples (e.g., spectrum of a patient’s
aqueous humor) be collected separately from the spectra
used to create the PLS model. To mimic this situation, a

model (5 factors) was prepared from the spectra (150-s,
300–1500 cm21, MSC and mean-center preprocessed) of
only the 25 AAH samples in Set I. The resulting 25-AAH
PLS model was then used to predict the glucose in Set
B HAH samples measured 3.6 weeks later, as shown in
the third row of Table II. For the ten 150-s HAH spectra,
RMSEP 5 21.6 mg/dL, r 2 5 0.994, and bias 5 9.4 mg/
dL. These encouraging results are nearly the same as
those found using the 50-AAH model to predict the
150-s Set B HAH spectra: RMSEP 5 21.5, r 2 5 0.993,
and bias 5 7.7 mg/dL. The similarity of these results
validates (1) the use of a smaller (25-sample) calibration
set and (2) the separation of the calibration step from the
gathering of HAH spectra to be predicted.

If there is no systematic error (random, normally dis-
tributed errors only), then the magnitude of the bias
should be statistically indistinguishable from zero. Con-
centration variance (s2) can be calculated from RMSEP
and bias according to

s2 5 (n/n 2 1)·(RMSEP2 2 bias2) (2)

where n is the number of samples in the set.12 The un-
certainty of the bias is then

u 5 6 t 3 (s)/n1/2 (3)

where t is Student’s t value for 95% confidence and
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Fig. 6. Standard deviation of glucose concentration predicted using
the 50-AAH PLS model (150-s calibration spectra). The standard de-
viation was calculated from independent replicate measurements of sa-
line solution ‘‘blank’’ samples, from replicate measurements of separate
AAH samples (eleven aliquots of a 173 mg/dL solution were analyzed
among Set I samples; nine aliquots of a 177 mg/dL solution were an-
alyzed among Set II samples), or from Eq. 2 for HAH Sets A and B.
Sample standard deviation is plotted versus the equivalent exposure
time of the spectra used for glucose prediction: (#) 7 Set I blanks; (M)
9 Set II blanks; (*) 11 replicate AAH measurements with Set I; (3) 9
replicate AAH measurements with Set II; (C) 7 Set A HAH samples;
and (D) 10 Set B HAH samples. (l) Standard deviations calculated
using Eq. 2 and N glucose predictions of the 17 HAH samples (see the
Data Processing subsection), plotted at 6-s intervals for clarity. (- - -)
Standard deviation proportional to (1/t1/2).

n 2 1 degrees of freedom. For the 10 HAH samples
predicted by the Set I 25-AAH model, u 5 615 mg/dL.
So the bias of 9.4 mg/dL cannot be statistically distin-
guished from a zero bias. This result demonstrates that a
model can remain fairly stable over a period of weeks.

As further evidence of model stability, the same cal-
culations were performed on predictions of glucose in the
25 Set II AAH samples. In this case, the larger number
of samples narrows the uncertainty limits and leads to u
5 69.3 mg/dL. The observed bias of 6.3 mg/dL is still
not distinguishable from zero bias, supporting the idea
that bias is negligible.

Noise. Long (150-s) equivalent exposure times and rel-
atively high laser power were used for the AAH and
HAH Raman spectra discussed above. The resultant high
excitation energy was chosen in an effort to reduce spec-
tral noise as much as possible. If all other noise sources
are successfully eliminated, Raman spectra become pho-
ton-counting-noise (shot-noise) limited. While spectral
intensity is directly proportional to exposure time, t, spec-
tral shot noise (standard deviation of intensity) is pro-
portional to t1/2. Normalization of spectra (including by
MSC preprocessing) rescales the data by dividing each
spectrum by a number roughly proportional to t. The shot
noise on the scaled spectra then varies as 1/t1/2, which
means that the variance of intensity is proportional to
1/t. PLS predicted concentrations are the sum of the
scaled spectral intensities multiplied by the calibration
vector elements (see Eq. 1), so concentration variance (s2)
is also expected to be roughly proportional to (1/t). One
can arrive at the same expected time dependence by
viewing concentrations predicted based on longer-expo-
sure-time spectra as the average of several concentration
predictions based on shorter-exposure-time spectra. Then
the concentration variance is the square of the standard
error of the mean and thus is proportional to 1/n.

Standard deviations of glucose concentrations deter-
mined (predicted) from the 50-AAH PLS model are plot-
ted in Fig. 6 versus the equivalent exposure times of their
spectra (one spectrum per sample for all points except
those denoted by l). Concentration standard deviations
(s) were quantified from replicate measurements of saline
solution ‘‘blank’’ samples, from replicate measurements
of a separate AAH sample (a 173 mg/dL glucose sample
was analyzed repeatedly among Set I samples; a 177 mg/
dL glucose sample was analyzed repeatedly among Set
II samples), or were calculated for same-set HAH sam-
ples using Eq. 2. A smoother indication of the depen-
dence of HAH precision on exposure time is shown by
the solid diamonds (l) in Fig. 6 (plotted at 6-s intervals
for clarity). These points represent the concentration stan-
dard deviations for the set of 17 HAH samples (A and B
combined), calculated from as much of the spectral data
as possible, resulting in a larger number of predictions
from which to calculate the standard deviation (see the
Data Processing subsection above). The dashed line in
Fig. 6 represents the 1/t1/2 dependence of the largest stan-
dard deviation plotted at 3 s. As can be seen, none of the
sample sets’ standard deviations decrease at the theoret-
ical rate, although the two sets of AAH replicates appear
closer to doing so than the other sets. Even in the theo-
retical best case, increasing exposure time as a way to
decrease noise has diminishing effectiveness at longer

times, as shown by the dashed line in Fig. 6. However,
the noise of some of the data sets in Fig. 6 seems to
become independent of exposure time past a certain
point. This can happen when noise that varies randomly
on the time scale of the exposure is no longer the major
source of uncertainty. Further improvement to the preci-
sion of a measurement may still be possible by averaging
replicate results obtained over a longer period of time if
a more slowly varying but still apparently random noise
is significantly influencing results.

Further work is needed to identify and reduce the
sources of uncertainty in this study, or at least to discover
what time scale is needed to collect independent repli-
cates. Sources of uncertainty could include instability in
laser-beam intensity, wavelength, pointing, or polariza-
tion; vertical and/or horizontal sample positioning issues;
formation of small bubbles in the sample; or possibly
temperature effects. Reference concentration uncertainty
may also contribute but is not likely to be the dominant
source of the observed prediction uncertainty since the
former should be proportional to concentration, while the
latter apparently is not, as can be seen in Fig. 5 for long
exposure times.

Reduced Aqueous Humor Laser Exposure. From the
leveling off of the curves in Fig. 6, one might conclude
that 30-s HAH spectra should give results similar to
150-s HAH spectra. To test this, 30-s spectra of the 17
HAH samples were predicted by the 50-AAH model,
yielding the results listed in the fourth row of Table II.
In addition, 30-s spectra of the 10 Set B HAH samples
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were predicted by the Set I 25-AAH model. These results
appear in the sixth row of Table II. To test the effect of
further reducing exposure time, 12-s spectra were simi-
larly predicted and appear in the last rows of Table II.
The number of predictions, N, from which RMSEP, r 2,
and bias were calculated is listed in the last column of
each row.

A comparison between the 150-s and 30-s results re-
veals that they are essentially the same, confirming the
hypothesis (based on Fig. 6) that 30 s of exposure time
would do as well as 150 s of exposure time for HAH
glucose determination in this study. Further reduction of
exposure time, to 12 s, results in somewhat larger deter-
mination errors. This may be due to the dwindling signal-
to-noise ratio of the 12-s sample spectra beginning to
overshadow the uncertainty contributed by the calibra-
tion.17

Whereas the prediction errors of the 12-s glucose de-
terminations may be slightly larger than desirable for
clinical work,18 they could be reduced to acceptable levels
by averaging two such measurements. Because of diver-
gence within the human eye of the laser beam from our
Raman instrument, the irradiance of a 12-s exposure
(1200 mJ) on the retina would be below the International
Commission on Non-Ionizing Radiation Protection (IC-
NIRP) and the American National Standards Institute
(ANSI) thresholds for retinal toxicity if delivered over
more than 40 s. So, for example, two doses of laser light,
25 mW for 48 s each, should give in vivo aqueous humor
spectra capable of producing a clinically useful glucose
determination. In practice, multiple shorter duration ex-
posures would probably work better, since obviously un-
usable spectra, such as those collected during blinking,
could be discarded before processing.

Conclusions. Using 785 nm, ;15 J Raman spectra,
PLS models created from AAH calibration solutions con-
taining experimentally designed levels of glucose, bicar-
bonate, lactate, urea, and ascorbate were shown to predict
glucose levels of in vitro human aqueous humor (HAH)
with r 2 . 0.99 relative to reference concentrations mea-
sured with a commercial glucose-oxidase analyzer. Such
a high laser energy level was employed to obtain cali-
bration spectra with good signal-to-noise ratios. We ex-
plored how reduction in the laser energy used for col-
lecting HAH spectra affected glucose prediction. Table II
summarizes the statistics found for HAH glucose predic-
tions, along with AAH predictions for comparison. The
last row of each exposure group represents the prediction
of glucose in ten in vitro HAH samples using a PLS
model created from 25 ‘‘artificial aqueous humor’’ cali-
bration solutions, the spectra of which had been collected
3.6 weeks earlier. The results indicate that the PLS cali-
bration was stable for several weeks and that the com-
ponents of in vitro HAH not represented in the calibration
solutions did not appear to cause interference with the
determination of glucose levels above ;50 mg/dL.
Though there remain a number of challenges to solve
before this approach can be applied in vivo, the results

of this study support the idea that a calibration model
based on high signal-to-noise spectra may successfully
predict appropriately gathered low-laser-power spectra to
make Raman spectroscopic determination of glucose in
human eyes feasible.
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